Synthesis and palladium-catalysed transformation of an annelated barrelene

Gerald D yker, ${ }^{*, \mathrm{a}}$ Thomas Kerl, ${ }^{\text {a }}$ Peter G. J ones, ${ }^{\text {b }}$ Ina D ix ${ }^{\text {b }}$ and Peter Bubenitschek ${ }^{\text {c }}$

${ }^{\text {a }}$ Fachbereich 6, O rganische/M etallorganische C hemie, Gerhardt-M ercator-U niversitätGesamthochschule D uisburg, L otharstrasse 1, D-47048 D uisburg, Germany
${ }^{\mathrm{b}}$ I nstitut für A nalytische und A norganische C hemie, Technische U niversität Braunschweig, H agenring 30, D-38106 B raunschweig, Germany
${ }^{\text {c }}$ Institut für O rganische C hemie, Technische U niversität Braunschweig, H agenring 30,
D-38106 Braunschweig, Germany

The annelated barrelene 8 is easily accessible in a three-step reaction procedure from simple starting materials. An intermolecular palladium-catalysed arylation at the strained tetrasubstituted double bond of the barrelene finally leads to polycyclic hydrocarbons.

Introduction

Barrelenes are a group of hydrocarbons with an interesting three-dimensional carbon framework. The parent compound, bicyclo[2.2.2]-octa-2,5,7-triene $\mathbf{1}^{1}{ }^{1}$ which lends the group its name because of its barrel-shaped π-electron cloud, ${ }^{2}$ shows remarkable reactivity. For example, with dicyanoethyne, the compound is transformed to 1,2-dicyanonaphthalene even at room temperature. ${ }^{3}$ Photochemical conversion of 1 into semibullvalene with acetone as sensitizer ${ }^{4}$ was one of the first examples of the di- π-methane rearrangement. ${ }^{5}$ Benzoannelation of 1 leads to benzobarrelene (1,4-dihydro-1,4-ethenonaphthalene), ${ }^{6}$ dibenzobarrelene $\mathbf{2}^{7}$ and, finally, to triptycene 3. ${ }^{8}$

1

2

3

The last-mentioned compound is easily accessible by cycloaddition of dehydrobenzene to anthracene. ${ }^{9}$ By analogy, the annelated barrelene 8 can be regarded either as a cycloadduct of benzo[k]fluoranthene ${ }^{10}$ with dehydrobenzene or as an adduct of anthracene with acenaphthyne. ${ }^{11}$ The latter is an extremely strained cycloalkyne, which has been observed in an argon matrix, but failed to react with dienes as trapping agents. Therefore, we tested a reaction sequence including the Diels-Alder reaction of acenaphthylene 4 and anthracene 5 followed by dehydrogenation as an alternative approach to the annelated barrelene 8 .

Results and discussion

The Diels-A Ider product 6 is formed in 76% yield by heating a 1:2 mixture of acenaphthylene $\mathbf{4}$ and anthracene 5, both constituents of coal tar, ${ }^{12}$ at $215^{\circ} \mathrm{C}$ for $4 \mathrm{~h}^{13}$ (Scheme 1). Pre

4
$+$
$+$
$\xrightarrow[76 \%]{\mathrm{i}}$

5

6

8

7

Scheme 1 Synthesis of the annelated barrelene 8. Reaction conditions: $\mathrm{i}, 215^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{~N}_{2}$; ii, NBS (2 equiv.), $\mathrm{CCl}_{4}, \mathrm{~A} \mid \mathrm{BN}, 5 \mathrm{~h}$, reflux; iii, excess Zn, DMF, $150^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
sumably, 6 itself is a hitherto undetected component of coal tar. Bromination of 6 with N -bromosuccinimide (2 equiv.) in CCl_{4} takes place regioselectively at the benzylic positions of the acenaphthene moiety to give the dibromide 7 (64\%). The bridgehead position adjacent to the benzene rings is not brominated, since a radical intermediate at this position is not stabil-

Fig. 1 Perspective views of the X-ray structure of barrelene 8, atomic radii are arbitrary
ized by conjugation due to geometric constraints. The final step is the dehalogenation of 7, which can be efficiently achieved by refluxing a solution of the dibromide $\mathbf{7}$ with an excess of powdered zinc in DM F for 3 h. ${ }^{14}$ Barrelene 8 was obtained as orange crystals in excellent yield (97\%).

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 the signal of the bridgehead hydrogen atoms ($\delta 5.64$) is shifted downfield compared to that of the methine protons in triphenylmethane $(\delta 5.54)^{8 \mathrm{a}}$ and triptycene ($\delta 5.44$). ${ }^{8 \mathrm{a}}$ The $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spin system of the former anthracene and the ABC spin system of the acenaphthylene moiety can be easily identified in the aromatic range of the spectrum.
The molecular structure of barrelene 8, as determined by an X-ray crystallographic analysis, is shown in Fig. 1. In the side view it becomes clear that the double bond is slightly pyramidalized with a hinge angle Ψ of 8.9°. ${ }^{15}$ This observation is presumably due to effects of the crystal packing. The C(6B)$\mathrm{C}(12 \mathrm{~A})$ bond of $\mathbf{8}[135.8(3) \mathrm{pm}]$ is almost 4 pm shorter than the corresponding bond in acenaphthylene ${ }^{16}$ and, therefore, is to be regarded as a localized double bond.

We tested 8 as a coupling component in a palladiumcatalysed process. In general, the reactivity of tetrasubstituted $\mathrm{C}=\mathrm{C}$ double bonds towards arylpalladium complexes ${ }^{17}$ is sufficient only for intramolecular cases. ${ }^{18}$ The intermolecular palladium-catalysed arylation of tetrasubstituted alkenes was

Fig. 2 X-R ay structure of hydrocarbon 10, atomic radii are arbitrary
observed exclusively with acenaphtho[1,2-a]acenaphthylene and fullerene $\mathrm{C}_{60}{ }^{19}$ where the double bonds are especially strained and steric hindrance is minimized. The palladiumcatalysed arylation of 8 with an excess of iodobenzene under typical conditions ${ }^{19}$ (Scheme 2) leads to a complex product

Scheme 2 Palladium-catalysed arylation of 8. Reaction conditions: $\mathrm{Pd}(\mathrm{OAC})_{2}$ ($5 \mathrm{~mol} \%$), iodobenzene (30 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{~N} \mathrm{Br}, \mathrm{DM} \mathrm{F}$, $\mathrm{N}_{2}, 100^{\circ} \mathrm{C}, 7 \mathrm{~d}$.
mixture of hydrocarbons: besides anthracene 5 (almost quantitatively), dibenzo[j,I]fluo ranthene $9{ }^{20}$ (27%) was obtained as the main product. The phenylated derivative 10 was isolated (20\%) and identified by an X-ray structure analysis (Fig. 2). Obviously, a retro-D iels-A Ider reaction takes place under the conditions, presumably at the stage of the intermediate palladium complex 11. The vinylpalladium complex 12 should then undergo domino coupling reactions in analogy to the known annelation reactions of norbornene, ${ }^{21}$ forming the phenanthrene moiety of the hydrocarbons 9 and 10.
A perspective view of the structure of molecule $\mathbf{1 0}$ is pictured in Fig. 2, showing the displacement of atoms from the plane through the molecule and indicating a helical structure
The molecule 10 (except for the substituted phenyl ring) is only approximately planar with a mean deviation of 22.7 pm ,
although most atoms show a significant deviation from the plane. The torsion angles involving the atoms $\mathrm{C}(8), \mathrm{C}(8 \mathrm{a})$ and $\mathrm{C}(8 \mathrm{~b})$ [C(7)-C(8)-C(8a)-C(8b): 169.4(2) ${ }^{\circ}$ C (8)-C(8a)-C (8b)C (8c): $\left.-21.1(3)^{\circ} ; C(8 a)-C(8 b)-C(8 c)-C(9):-9.0(3)^{\circ}\right]$ are associated with the greatest distortion.
Further studies of the reactivity of barrelene 8 are in progress. Reaction sequences of cycloaddition at the reactive double bond and subsequent retro-D iels-A Ider reaction should open a valuable route to strained annelated ring systems.

Experimental

General experimental techniques and analytical measurements were applied as previously described. ${ }^{22}$

6b,7,12,12a-Tetrahydro-7,12-benzenobenzo[k]fluoranthene 6

A mixture of acenaphthylene 4 ($70 \% ; 2.04 \mathrm{~g}, 9.38 \mathrm{mmol}$) and anthracene $5(3.75 \mathrm{~g}, 21.0 \mathrm{mmol})$ was stirred under N_{2} at $215^{\circ} \mathrm{C}$ for 4 h after which it was cooled and fractionally sublimed in a K ugel rohr apparatus; from the first fraction ($160^{\circ} \mathrm{C} / 0.1 \mathrm{mbar}$) unchanged anthracene and acenaphthylene were isolated. The second fraction ($160-180^{\circ} \mathrm{C} / 0.1 \mathrm{mbar}$) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane ($2: 1$) and dried in vacuo to give colourless crystals of $6(2.34 \mathrm{~g}, 76 \%), \mathrm{mp} 242{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} 242-244{ }^{\circ} \mathrm{C}$); $\lambda_{\text {max }}{ }^{-}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}(\log \varepsilon) 208(4.78), 228(4.69), 274(3.78), 282$ (3.85), 294 (3.92), 302 (3.74), 308 (3.64), 316 (3.03) and 322 (3.05); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3068 \mathrm{w}, 3033 \mathrm{w}, 3021 \mathrm{w}, 2947 \mathrm{w}, 2939 \mathrm{w}$, 2916m, 1605w, 1482w, 1463m, 1372w, 1166w, 795m, 772s, 753s, $739 \mathrm{~m}, 689 \mathrm{w}, 618 \mathrm{~s}, 553 \mathrm{~m}$ and 525 m ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{SiM}_{4}\right) 4.13(2 \mathrm{H}, \mathrm{br}$ s), $4.65(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.62(2 \mathrm{H}, \mathrm{m}), 6.79(2 \mathrm{H}$, $\mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 7.32-7.40(6 \mathrm{H}, \mathrm{m})$ and $7.43(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}}(100$ $\left.\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 49.89$ (d), 50.92 (d), 118.79 (d), 122.66 (d), 123.96 (d), 124.77 (d), 125.18 (d), 126.03 (d), 127.61 (d), 131.10 (s), 140.09 (s), 140.67 (s), 143.94 (s) and 145.49 (s); m/z (\%) 330 (1.1 ; M^{+}), 326 (1), 324 (0.8), 286 (0.4), 179 (19), 178 (100), 176 (8), 152 (10) and 73 (12).

6b,12a-D ibromo-7,12-dihydro-7,12-benzenobenzo[k] fluoranthene 7

A solution of 6 ($500 \mathrm{mg}, 1.52 \mathrm{mmol}$), N -bromosuccinimide (565 $\mathrm{mg}, 3.17 \mathrm{mmol}$) and AIBN ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) in dry $\mathrm{CCl}_{4}(50$ ml) was refluxed for 5 h after which it was filtered; the residue was washed several times with CCl_{4}. The combined filtrate and washings containing the crude product were filtered through a pad of silica, and then evaporated in vacuo. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane to give colourless crystals of 7 which were dried in vacuo ($472 \mathrm{mg}, 64 \%$), $\mathrm{mp} 265-267^{\circ} \mathrm{C}$ (Found: C, 63.91; H , 3.25. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Br}_{2}$ requires C, 63.96; $\mathrm{H}, 3.30$); $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}(\log \varepsilon) 210(4.89), 228(4.74), 290(3.93, \mathrm{sh})$, 302 (4.01), 310 (3.90, sh); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3068 \mathrm{w}, 3042 \mathrm{w}, 3024 \mathrm{w}$, 2954w, 1498w, 1467m, 1459m, 1224w, 1162w, 1026w, 866m, 811s, 796m, 774s, 754s, 720w, 681w, 645w, 631s, 611m, 557s, 544 m and 440 w ; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{SiM} \mathrm{e}_{4}\right) 5.08(2 \mathrm{H}, \mathrm{s}), 6.59$ $(2 \mathrm{H}, \mathrm{m}), 6.72(2 \mathrm{H}, \mathrm{m}), 7.31(2 \mathrm{H}, \mathrm{m}), 7.47-7.52(4 \mathrm{H}, \mathrm{m}), 7.53$ $(2 \mathrm{H}, \mathrm{m})$ and $7.60(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 60.40(\mathrm{~d})$, 120.53 (d), 124.77 (d), 125.06 (d), 126.21 (d), 126.50 (d), 126.78 (d), 128.24 (d), 130.23 (s), 134.92 (s), 138.46 (s), 140.09 (s) and 144.62 (s); m/z (\%) 490 (0.14), 488 ($0.29 ; \mathrm{M}^{+}$), 486 (0.16), 409 (0.34), 407 (0.34), 328 (22), 327 (31), 326 (21), 178 (100) and 163 (19).

7,12-D ihydro-7,12-benzenobenzo[k]fluoranthene 8

A mixture of the dibromide $7(150 \mathrm{mg}, 0.30 \mathrm{mmol})$ and powdered zinc ($300 \mathrm{mg}, 4.60 \mathrm{mmol}$) in dry D M F (30 ml) was heated for 3 h at $150^{\circ} \mathrm{C}$. The orange-coloured reaction mixture was filtered and the residue washed twice with diethyl ether. The combined filtrate and washings were diluted with water (100 ml), and the layers were separated; the aqueous layer was then extracted with diethyl ether ($3 \times 50 \mathrm{ml}$). The combined extracts were washed twice with water, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and filtered. The filtrate was concentrated by removal of solvent in a rotary
evaporator (500 mbar) and the crude product was purified by flash chromatography (silica, hexanes-diethyl ether, 100:1) to give orange plates of barrelene 8 ($96 \mathrm{mg}, 97 \%$), mp $281-282^{\circ} \mathrm{C}$ (Found: C, 94.91; $\mathrm{H}, 4.78 . \mathrm{C}_{26} \mathrm{H}_{16}$ requires $\mathrm{C}, 95.09 ; \mathrm{H}, 4.91 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}(\log \varepsilon) 200(4.86, \mathrm{sh}), 230(4.72), 288(3.92)$, $320(3.90, \mathrm{sh}), 330(4.00)$ and $338(3.68, \mathrm{sh}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3065w, 3038w, 3017w, 2964m, 2924s, 2853m, 1465m, 1455s, $1429 \mathrm{~m}, 1218 \mathrm{w}, 1193 \mathrm{w}, 1178 \mathrm{w}, 1146 \mathrm{w}, 1133 \mathrm{w}, 1020 \mathrm{w}, 819 \mathrm{~s}$, $780 \mathrm{~m}, 766 \mathrm{~s}, 761 \mathrm{~s}, 744 \mathrm{~m}, 681 \mathrm{~m}, 635 \mathrm{~s}, 624 \mathrm{~s}, 561 \mathrm{~m}, 480 \mathrm{w}$ and $467 \mathrm{w} ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{SiM} \mathrm{e}_{4}\right) 5.64(2 \mathrm{H}, \mathrm{s}), 6.94(4 \mathrm{H}, \mathrm{m})$, $7.39(4 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,6.9), 7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3)$ and 7.71 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 49.33$ (d), 121.49 (d), 123.44 (d), 124.76 (d), 127.18 (d), 127.31 (d), 128.30 (s), 128.58 (s), 135.50 (s), 146.62 (s) and 151.87 (s); m/z (\%) 329 (26), 328 (100; M ${ }^{+}$), 327 (94), 326 (52), 324 (16), 250 (8), 178 (21), 163 (20), 162 (12) and 157 (6).

C rystal structure determination ${ }^{23}$

Crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane.
Crystal data. $\mathrm{C}_{26} \mathrm{H}_{16}$, orthorhombic, $\mathrm{Pbca}, \mathrm{a}=831.22(8)$, $\mathrm{b}=1611.2(2), \mathrm{c}=2508.5(3) \mathrm{pm}, \mathrm{V}=3.3596 \mathrm{~nm}^{3}, \mathrm{Z}=8, \lambda(\mathrm{M} \mathrm{o-}$ $\mathrm{K} \alpha$) $=71.073 \mathrm{pm}, \mathrm{T}=-130^{\circ} \mathrm{C}$.

D ata collection. Orange prism ca. $0.6 \times 0.5 \times 0.3 \mathrm{~mm}$, Stoe STADI-4 diffractometer, $2 \theta_{\max }=50^{\circ}$, 2966 reflections, 2961 unique.

Structure solution and refinement. Direct methods, refined on F^{2} using SHELXL-93 (G. M. Sheldrick, U niv. of Göttingen). Hydrogen atoms: riding model. Final wR $\left(F^{2}\right)=0.120, R(F)=$ 0.045 for 235 parameters; max. $\Delta \rho=173 \mathrm{enm}^{-3}, \mathrm{~S}=1.14$.

Palladium-catalysed arylation of 8 with iodobenzene

A mixture of $8(130 \mathrm{mg}, 0.39 \mathrm{mmol})$, iodobenzene ($2.47 \mathrm{~g}, 12$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(475 \mathrm{mg}, 3.44 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NBr}(266 \mathrm{mg}, 0.83$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAC})_{2}(5.6 \mathrm{mg}, 25 \mu \mathrm{~mol})$ in dry DM F (4 ml) was stirred under N_{2} in a sealed tube (for convenience) for 7 d at $100^{\circ} \mathrm{C}$. A fter dilution with water (100 ml), the reaction mixture was extracted thrice with diethyl ether (75 ml). The combined extracts were filtered through a pad of silica and evaporated in vacuo (500 mbar). Volatile starting materials and by-products such as biphenyl were removed in a Kugelrohr apparatus at $50^{\circ} \mathrm{C} / 0.1$ mbar. Flash chromatography of the residue with hexanes-diethyl ether (100:1) as solvent gave two main fractions: yellow needles of dibenzo[j, I fluoranthene (9) ($\mathrm{R}_{\mathrm{F}} 0.18$) (31 mg, 27\%), mp 267-268 ${ }^{\circ} \mathrm{C}$ [lit., ${ }^{20} 253-254{ }^{\circ} \mathrm{C}$ (toluene)] and orange crystals of 1-phenyldibenzo[j,I]fluoranthene (10) (R_{F} 0.15) ($29 \mathrm{mg}, 20 \%$), $\mathrm{mp} 197^{\circ} \mathrm{C}$ (Found: C, 95.13; H, 4.86. $\mathrm{C}_{30} \mathrm{H}_{18}$ requires C, 95.21; $\mathrm{H}, 4.79 \%$).
Compound 9. $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{SiM}_{4}\right) 7.69(2 \mathrm{H}, \mathrm{m})$, $7.75(2 \mathrm{H}, \mathrm{m}), 7.71(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,7.1), 7.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2)$, 8.57 (2 H, d, J 7.1), 8.80 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$), 8.92 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 123.51$ (d), 124.84 (d), 126.08 (d), 127.07 (d), 127.43 (d), 127.81 (d), 129.23 (s), 129.70 (s), 130.76 (s), 131.81 (s), 133.66 (s) and 137.68 (s); m/z (\%) 305 (14), 304 (57), 302 ($100 ; \mathrm{M}^{+}$), 300 (34), 298 (11), 152 (9), 151 (21) and 150 (27).

Compound 10. $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{SiM} \mathrm{e}_{4}\right) 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3), 6.99 ($1 \mathrm{H}, ' \mathrm{dd}$ ', J ≈ 8.0), $7.28-7.32$ ($3 \mathrm{H}, \mathrm{m}$), 7.53-7.79 (9 $\mathrm{H}, \mathrm{m}), 8.52(1 \mathrm{H}, \mathrm{d}$ ', J $\approx 7.3), 8.76(2 \mathrm{H}, \mathrm{m})$ and $8.92(1 \mathrm{H}, \mathrm{d}$ ', $\mathrm{J} \approx 8.0$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 122.44$ (d), 123.93 (d), 124.55 (d), 124.88 (d), 125.82 (d), 126.25 (d), 126.40 (d), 127.20 (d), 127.22 (d), 127.30 (d), 127.35 (d), 127.61 (d), 127.82 (d), 128.64 (d), 128.92 (s), 129.72 (s), 130.35 (d), 130.85 (d), 131.21 (s), 132.77 (s), 134.45 (s), 135.02 (s), 137.71 (s), 137.79 (s), 139.65 (s) and 144.23 (s); m/z (\%) 380 (21), 379 (37), 378 ($100 ; \mathrm{M}^{+}$), 376 (36), 374 (20), 363 (10), 349 (9), 302 (6), 188 (9), 187 (15), 181 (12), 180 (7) and 178 (6).

C rystal structure determination ${ }^{23}$

Crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane.
Crystal data. $\mathrm{C}_{30} \mathrm{H}_{18}$, monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}, \mathrm{a}=1083.87$ (10),
$\mathrm{b}=1586.1(2), \mathrm{c}=1123.7(2) \mathrm{pm}, \beta=102.813(10)^{\circ}, \mathrm{V}=1.8836$ $\mathrm{nm}^{3}, \mathrm{Z}=4, \lambda(\mathrm{M} \mathrm{o-K} \alpha)=71.073 \mathrm{pm}, \mathrm{T}=-100^{\circ} \mathrm{C}$.

Data collection. Pale orange prism ca. $0.9 \times 0.5 \times 0.25 \mathrm{~mm}$, Siemens P4 diffractometer, $2 \theta_{\text {max }}=50^{\circ}$, 3482 reflections, 3301 unique ($R_{\text {int }} 0.025$).
Structure solution and refinement. Direct methods, refined on F^{2} using SHELXL-93 (G. M. Sheldrick, U niv. of Göttingen). Hydrogen atoms: riding model. Final $w R\left(F^{2}\right)=0.097, R(F)=$ 0.041 for 271 parameters and 306 restraints (to U components); $\max . ~ \Delta \rho=146 \mathrm{enm}^{-3}, \mathrm{~S}=0.86$.

Acknowledgements

We thank Degussa AG for a generous donation of palladium acetate.

References

1 (a) J. Hine, J. A. Brown, L. H. Zalkow, W. E. G ardner and M. Hine, J. Am. Chem. Soc., 1955, 71, 594; (b) H. E. Zimmerman and R . M . Paufler, J. A m. Chem. Soc., 1960, 82, 1514.
2 A . N ickon and E. F. Silversmith, O rganic chemistry: the name game, Pergamon Press, Oxford, 1988, pp. 58-59.
3 H. E. Zimmerman and G. L. Grunewald, J. Am. Chem. Soc., 1964, 86, 1434.
4 H. E. Zimmerman and G. L. G runewald, J. A m. Chem. Soc., 1966, 88, 183.
5 Review: (a) S. S. Hixon, P. S. M ariano and H. E. Zimmerman, Chem. Rev., 1973, 73, 531; for mechanistic studies, see also ref. 4; (b) H. E. Zimmerman, R. W. Binkley, R . S. Givens and M . A. Sherwin, J. Am. Chem. Soc., 1967, 89, 3932; (c) H. E. Zimmerman, H. M . Sulzbach and M . B. Tollefson, J. A m. Chem. Soc., 1993, 115, 6548; (d) H. E. Zimmerman, A. G. K utateladze, Y. M aekawa and J. E. M angette, J. A m. Chem. Soc., 1994, 116, 9795.

6 L. Pu and R. H. G rubbs, J. Org. C hem., 1994, 59, 1351
7 (a) S. J. Cristol and N. L. H ause, J. A m. Chem. Soc., 1952, 74, 2193;
(b) H. P. Figeys and A . D ralants, Tetrahedron, 1972, 28, 3031; (c) L. Paquette, Tetrahedron Lett., 1981, 22, 4643; (d) O. D e Lucchi, V. Lucchini, L. Pasquato and G. M odena, J. Org. Chem., 1984, 49, 596.

8 (a) Review: F. Vögtle, Reizvolle M oleküle der organischen Chemie, Teubner, Stuttgart, 1989, pp. 209-230; (b) P. D. Bartlett, M . J. Ryan and S. G. Cohen, J. Am. Chem. Soc., 1942, 64, 2649; (c) W. Theilacker, U. Berger-Brose and K. H. Beyer, Chem. Ber., 1960, 93, 1658.

9 For reviews about dehydrobenzene, see: (a) R. W. H offmann, D ehydrobenzene and cycloalkynes, A cademic Press, N ew York, 1967;
(b) E. K. Fields in Organic Reactive Intermediates, ed. S. P. M cM anus, A cademic Press, N ew York, 1973.
10 (a) M. H. M oureu, P. Chovin and G. Rivoal, Bull. Soc. Chim. Fr., 1948, 99; (b) M. Orchin and L. Reggel, J. Am. Chem. Soc., 1951, 73, 436; (c) E. H. Vickery and E. J. Eisenbraun, Org. Prep. Proced. Int., 1979, 11, 259.
11 (a) O. L. Chapman, J. G ano, P. R. West, M. R egitz and G. M aas, J. Am. Chem. Soc., 1981, 103, 7033; (b) J. N akayama, E. Ohshima, A. Ishii and M. Hoshino, J. Org. Chem., 1983, 48, 60; (c) K. R asheed, Tetrahedron, 1966, 22, 2957.

12 K . F. Lang and I. Eigen, Fortschr. C hem. Forsch., 1967, 8, 91.
13 G. D yker, Tetrahedron Lett., 1991, 32, 7241.
14 P. R. Spurr, B. A. R. C. M urty, W.-D. Fessner, H. Fritz and H. Prinzbach, A ngew. C hem., 1987, 99, 486; A ngew. C hem., Int. Ed. Engl., 1987, 26, 455.
15 R. C. H addon, J. A m. C hem. Soc., 1990, 112, 3385.
16 R. A. Wood and T. J. Welberry, J. Chem. Soc., Perkin Trans. 2, 1985, 451.

17 R. F. H eck, Org. React., 1982, 27, 345.
18 (a) R. Grigg, V. Sridharan, P. Stevenson and T. Worakum, J. Chem. Soc. Chem. Commun., 1986, 1697; (b) M. M. A belman, T. Oh and L. E. Overman, J. Org. C hem., 1987, 52, 4130.

19 G. Dyker, J. K örning, P. G. Jones and P. Bubenitschek, Angew. Chem., 1993, 105, 1805; A ngew. Chem., Int. Ed. Engl., 1993, 32, 1733.

20 E. Buchta and H. M aar, C hem. Ber., 1962, 95, 1826.
21 (a) M. C atellani and G. P. Chiusoli, J. O rganomet. C hem., 1985, 286, C13; (b) O. Reiser, M. Weber and A. de M eijere, A ngew. Chem., 1989, 101, 1071; A ngew. C hem., Int. E d. Engl., 1989, 28, 1037; (c) K. A lbrecht, O. Reiser, M. Weber and A. de M eijere, Tetrahedron, 1994, 50, 383.
22 G. Dyker, F. Nerenz, P. Siemsen, P. Bubenitschek and P. G. Jones, Chem. Ber., 1996, 129, 1265.
23 F urther details of the crystal structure investigation are available on request from the Cambridge Crystallographic D ata C entre; \dagger such a request should be accompanied by a full bibliographic citation together with the reference number CCDC 207/95.
\dagger For details of the Scheme, see Instructions for Authors (1997), J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1.

Paper 6/06857]
Received 7th O ctober 1996
A ccepted 9th J anuary 1997

